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1. Introduction and Summary

In this paper, a two-sample, two-stage non-parametric estima-
tion problem will be studied. The parameter 6 = 6(F, G) under
consideration is estimable (i.c., therc exists an unbiased estima-
tor ¢ = o(xl,...,xr; YL

ent observations from two populations with cumulative distribution

"’Ys) of 6). ¢ is a function of independ-

functions i(X) and G(Y). (Hence, it is called a two-sample prob-
lem.) “hc iunctions F(X) and G(Y) will be restricted to be members
of a specified class D of pairs oi' cumulative distribution func-
tions, described in the context. The total number of observations
from the two populations X and Y will be a fixed number N. The
estimation procedure is carried out in two stages. First, take M
observations from each of the populations; then, allocate the
remaining N - 2M observations to the same populations. The method
of allocation utilizes the information from the first stage obser-
vations.

A two-stare estimator, rcpresented by U', will be introduced.
It is a U-statistic with random sample sizes. (See [U4] on general
U-statistics. U' is defined in Section 3.) One of the main re-
sults (presented in Section 4) is that, under certain conditions,
the variance of U' approaches asymptotically s particular variance
Vye This particular V, (defined in Section 2) is the minimized
asymptotic variance of a one-stage estimator U. In other words,
it 1s computed (see Section 2) when the best one-stage allocation
of N observations to the two populations is made with the help of
a partial or even complete information about the distributions

F(X) and G(Y). Such an information about F and G is represented

4
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by the "nuisance parameters” b, , blo(F, G), by * 'bo]_(l’, 6),

etc., defined in Section 2. Thus, in partieular, V. can be

0
computed only when blo and bOl are known. Moreover, using these

parameters, it will be shown in Section 2 that V. is the smallest

o]
among the variances of all one-stage estimators of 6. However, no

prior knovledge of b,, and b,, is required to compute Var(U'), and

10 0
it will be proved in Section 4 that Var(U' )/V0 converges to unity
as N approaches to infinity.

A brief review of some basic properties of one-stage U-
statistics as well as some conventions on notations will be also
presented in Section 2.

In Section 5, the "optimal" choice of the first stage sample
size M relative to the fixed total sample size N is discussed.
Three cases with different conditions on the unbiased estimator ¢
vill be considered. In each case, it is found that the "optimal®
choice depends on the specific conditions. (For details, see
Section 5.)

Section 6 contains some examples. Here, to each 8(F, G), the
corresponding estimators for blo and 'b01 together with their be-
havior under different conditions on F and G, will be given. i‘he
examples include the cases that the above described two-stage
estimation procedure can be epplied as well as cases where it can-
not dbe applied.

Section T contains a proof of the asymptetic normality of U'.

In Section §, it is indicated that this two-stage two-sample
estimation procedure can be extended to k-sample two-stage estima-

tion with similar results for k > 2.
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In the last section, Section 9, another two-stage two-sample
estimator U" will be introduced. It is based on the combined ob-
servations of both stages of total N ocbservations, as compared to
U', which is based on the second stage of N - 2M observations only.
U" 1s biased while U' is unbiased. Since U" is of a different na-
ture as compared to U', the corresponding proofs are much involved.
The results on U" will be sumarized, without proof, in this
section.

The technique of two-stage estimation has been discussed in
several papers. Stein [11) has used a two-stage procedure to de-
termine confidence intervals of a pre-assigned length for the mean
of a normal population with unknown variance. Putter [7] used
such a technique to estimate the mean of a stratified normal popu-
lation. Robbins [9] discussed a two-stage procedure from the
point of view of the design of experiments. Later, Ghurye and
Robbins [3] used a two-stege technique to estimate the difference
between the means of tvo normal populations (or some other speci-
fied populations). Richter [8] Aiscussed the estimation of the
commnon mean of two normal populations. The resulis of the present
paper, then, are to generalize these two-stage procedures in two
vays. First, the underlying cumulative distributions F, G are
members of a larger class of distributions. Secondly, the under-
lying parameters 6(F, G) are not restricted to population means

or functions of weans.

2. Some Basic Properties of One-stage U-statistics and Notations

Before formulating the problem, a short review of some basic
properties of U-statistics is given in this section, based on



references (4, 10]. For convenience of presentation, some
specific notations are adopted here as well as throughout this
baper:

(1) k will be used as a generic constant, which may represent
different values according to the context.

(2) e' will be used as any small positive real mumber, its
value will be specified in various situations.

(3) Vectorial notations will be used such as:

ir = (xl,...,xr), wherer = 1, 2, ...

Xy = (Xygps o0s %)
i*a = (xil’ vees xiJ)

b 4 = (X
I, 3 1

Here, the subscripts of the coordinates are a permutation of some

s x ) .
J+l, 2 ik

set of integers, which will be specified in the context.

In order to give a definition of a two-sample one-stage U-
statistic, let us consider two populations X and Y with cumulative
distribution functions F and G respectively. Also, let us con-
sider a real vglued estimable parameter 6 = 6(F, G).

By the statement that 6@ 1s estimable, we mean that there
exists a function O(ir; Ys) such that, with the integration taken
over all values of X's and Y's,

(2.1) o(r, G) -f...fo(ir; Ts)dr(xl) d.r(xr)dG(Yl)...dG(Y‘).

Here, ir, T. are r and s independent observations from population

X and Y respectively. Moreover, all F's and G's are restricted to



be members of a specified class L of pairs of curmlative distribu-
tion functions of the populations X and Y.

Without loss of generality, the function ¢, called the kernel,
can be ascumed to be syrmesric in its X arguments and its Y argu-
ments separately. (See [4, 10].) Iurthermore, since any function
of r X's and s Y's can be writtes as a function of nax(r, s) of
X's and Y's, we shall assume r = 8.

Definition ([2, 4, 10])

A U-statistic associated with the painmetcr O and the kernel
¢, delined as above, in a sample oi' m ooservations on population X
and n observations on population Y for m, n > r, 1s defined as:

22) U _=uk;E)=(®

1 n-l
m,n m’ n r () ;°(ii

r

; Y)
r

where the sunmation is {aken over all sets of integers such that

151 <_,,<1rsm; 1£Jl<...<3r_<.n.

1

Now, in order to write the variance of Um n* v define, for
¢4

c, 4= 0, 1, 2, reey Ty

(2.3) o'(X ;¥ ) =X ; ?J )-8
r Yr r °r

' (X 5 ¥ =Rt (% . X ¥
ooa(X s ¥3)  =Be'(x, X )

r,ci Yy

i.e., ¢' 1s the conditional expected volue of ¢', given ic and &d'

cd
Iiote “hat °6o = 0. Also define
. \ c 2
(2.4) Yea I.'[0:3(‘:()((:‘; ?d)] *

It can be deduced (2, p. 224, p. 257) that



' . ] .
bog = covle'(X K ?Jr), ¢ (kkr, ?tr)]
vhere (il,...,ir) and (kl,...,kr) are any twe sets of r distinct
integers from (1, 2, ..., m) and ¢ is the number of integers com-
mon to the two sets; (Jl,...,.jr) and (tl, ...,tr) are any two sets
of r distinct integers from (1, 2, ..., n) and d is the number of
integers common to the two sets. Then, the variance of Um, n can
be expressed [2, p. 257) ss:

“l -l r
(2:5) ver(y, ) = (%) () ci:o E ORI -

Next, according to Fraser [2], the cless D of pairs of cumula-
tive distributions, F(X) and G(Y), for um,x1 may be consisted of all
distributions uniform within intervals. (For definition, see [2].
Particular examples are: a) a class of pairs of absolutely con-
tinuous distribution functions or b) a class of pairs of discrete
distribution functions.) Then, an important theory regarding the
variance of Um,n is also given by Fraser [2, Theorem 7.1, p. 28
and Theorem 2.1, 2.2, p. 142].

Fraser's Theorem

If the class of pairs of distribution functions includes all
distributions uniform within intervals, mentioned above, then for
m n2r, Um, a is the unique minimum variance unbissed estimator.

Rosenblatt [10] has obtained the following Lemmas:

Rosenblatt's Lemma 2.4 For 1<c<g<r; 1£4<h<r, one has

(2.6) gb, <chd

g hb,a<db,, ed
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(2.7) 05L, <Ly, vhers

Lea * Pea = Yo - oa " E[oc':d(ic‘ ?d) - ':‘.o(ic) - ’éd(?d)]a'

co

Rosenblatt's Lemma 2.5 Va.r(Um n) has the following upper and
9

lower bounds:

!‘2 1‘2 ru
(2.8)  var(u, ) 2500+ 5Py i by
2

r r
(2.9) Var(um,n) SE V%0t % Yor * @ Yrr

In the above discussion, concerning U n,n only, it is assumed
that m and n are fixed numbers. Now, if m and n arc not fixed dut
the totel number of observations ou populations X end Y arc re-
stricted to be a fixed number N, i.e., m + n = N, we shall denote
such a two-sample statistic by U instead of Um’ .+ Using the
Quantities b,,, by, as defined in (2.4), the following statement
can be made on the lower bound of the variance of U.

Rosenblatt's Lemma 2.6 If the ratio m/n satisiies

O<a,15m,/n5a2<co, as m, n —> 0

then

- 2 o
var(U) > (r /m)blo + (r /n)b01 = V', say,

i.e., V' 1s the lover bound of Var(U) and V' 15 actually the
asymptotic variance of U.

liow, V' as defined sbove can be minimized by selecting the
best values of m and n subject tom +n =N, andm, n 2r, One

finds that the best choices are



(2.20) my = W0y /(0 + (0 2] = W, say, ant

o

These values for the sample sizes, represent, the best allocation

=N-mo=N(l-Q).

of N observations to the populations X and Y. They depend, how-
ever, on the unknowns blo and b01’ vhich represent a partial in-
formation about the distributions F(X) and G(Y) and have been
assumed to be positive quantities. In other words, these sample
sizes can be computed and the corresponding U statistic can be
constructed only when blo and bOl are positive and known.

The minimum value of V', denoted by V, 1s found to be

(2.11) v, = N'l[r(blo)% + r(bm))‘*]2 = V'(my, ny) .

It is clear that V0 is at least as small as the variance of any
estimator of @ based on U-statistics subject to the restriction
that m + n = N. Hence, VO is the minimized asymptotic variance of
U, when the best allocation of N observations to populations X and
Y is made. It will be used as a basis for comparison in the re-
meining sections. In particular, it will be shown that there

exist two-stage two-sample statistics, say U', such that

Var(U' )/Vo converges to unity as N approaches infinity, even though

no prior knowledge of blo and 'bol is required to compute Var(u').

3. Formulation of the Problem: the Two-stage Procedure and the

Estimator
In this section, a two-stage statistic U' will be defined.
The major result of the investigation on U', vhich will be present-
ed in Bection 4, 1s to show that with large eamples and under
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certain conditions she variance of U' approsches vo of equation

(2.11). Ko prior knowledge of blo and by, 18 required to obtain

1
v,
Definition of U'

let the total number of observations from populations X and Y

be fixed at N vhere N > 6r. At the first stage, M observations are

made on each of the two populations, where M > 2r and 2M < § - 2r.
From these 2 observed values, we shall estimate the parameters
b0 Poy+ It ie cbserved from (2.1) and (2.4) that b, 8nd by,
are estimable functions [4]. There exist two associated U-
statistics, called '1'10 and TOl’ vhich are unbiased estimators of
blo and b01 respectively., The symmetric kernels of these two
statistics are functions of 2r X's and 2r Y's. Thus one can ex-

press Tlo’ T01 as follows:

-1 -1 -2
(3:1) Tyo= () () Bl X~ (X) Enk %, )

2r  Yor

-1y -l -2
(3:2) Ty = () () Elel ()1 = (X) ek ;Y )

vhere the summations are taken over all sets of integers,
l_<_11< <12r5M; 15,11< <J2r5M.

In analogy with (2.10), we define

(3.3) 2= (Tm)i [(TOl)* + (Tlo)él'l, for T)q, T, Positive

Z2=0 othervise.
After Tlo‘ TOl and Z are computed, the second stage is con-

structed by teking m' more observations on population X end n'
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more observations on population ¥ with m' + u' = N - 2 = N*,

where the sample sizes m' and n' are determined as follows:

m' = [N'2] when r/N' <2< (W' - r)/N

(3.4) n' when zZ<r/N

"
2

m' =N -1 when 7> (N' - r)/N'

and n' =N-nm',
where [a)] 15 the largest integer contained in a.
With m' and n' so defined, the statistic U' will be defined
as the estimator of 6 (see equations (2.1) and (2.2)) based on m'
and n' observations on populations X and Y respectively.
(3.5) v = (%) l(‘;') g R

where the summation is taken over all sets of intepgers,

M+l<y

<...<4 SM+4m'; M+1<Y <. <Y <M+l
In other words, U' is explicitly a function of the szcond stage
observations only. However, the sample sizes m' and n' are in turn
explicit functions of the first stage observations. Hence, im-
Plicitly, U' depends on both stages.

Finally, notice that the allocation of N' observations in
(3.4) i the same as that of (2.10) with Z in place of Q. It will
be shown in Lemma 4.2 that if M —> o, then Z —> Q in probability.
Consequently, the probability of the first case of (3.4) occurring
approaches unity and the contribution of the other two cases to

the variance of U' will be negligible, as N' —> . Thus one may

dispose of the other two cases and replace (3.4) by m' = N'Z and
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n' = N'(1 - 2). (Note that the brackets nf (3.4) for m' and n'
will be left out hereafter, since its contribution to the variance

of U' is also negligible, as N' —> .)

REMARK: In the two-stage procedure, equal number of observations

on populastions X and Y are used at the first stage. Intui-
tively, when r = 8 occurs in the kernel ¢ in a natural vay
(t.e., no argument of ¢ is identically zero), and there is mo
jnformation sbout the relative sizes of blo and bOJ.’ equal
size semples seem sppropriate to the symmetry of the situa-
tion. When r § s, but one vrites ¢ as a function of max(r, 8),
one might doubt the appropriateness of the equal sample sizes

at the first stage.

' Asymptotic Efficiency of the Estimator
It is mentioned in Section 3 that 1f ¥ —=> ©® with M ~—> o0

and N' —=> o, then the second stege sample sizes (3.l4) can be

replaced by:
(b.1) m*=N'Z; n'=N(-2)

vhere b_ . and b.. gre assumed to be positive.

10 0l
In this section, it will be shown that under certain condi-
tions, the ratio between the variance of U' (defined in Section 3)
and Vo ¥ill asymptotically approach unity. (Recall that Vo, 18 the
stiallest of the variances of any one-stage U-ctatistic estimator
of @ subject to the restriction that m + n = N. VO can be computed
only when blO and bOl are known and the best one-stagc nllocation
of 1 observations to populations X and Y are made.) The proofs

are presented in Theorem 4.1. First, U' is shown to be unbiesed.
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Then, in Theorem 4.1, N Var(U') is partitioned into two parts,
namely, vhen |Z - Q| is less than M P for any p within the renge
0<p< %; and vhen 2 - Q| is greater than MP. (Recall that Q
glves the best allocation of N cbservations and the basis for
evaluating V,, see (2.10)). By the results of Lemmas 4.1 and
4,2, 1t is concluded that the second part is of the order of mag-

nitude of O(M 2HP

N). The first part of N Var(U') is shown to be
of the order of magnitude of [r(blo)i' + z'(bo:‘.)é:l2 + O(MN']') + o(M°P).
The first term of this expression 1s equal to N vo. Now, under
certain assumptions (see Theorem 4.1 delow) concerning the relative
order of magnitude of M and N and 0 <p <§. It will be shown

that o(lll"""m‘p N), o(M/N) and o(M"P) converge to zero as N epproaches
infinity. Hence the ratio var(U' )/Vo converges to unity, vhich is
the result of Theorem k.1.

In Section 5%, it will be shown that the best choice of M
(under the assumptions of Theorem 4.1) 1s equal to m6/7 , where K
is & non-gero unknown constant. The resulting value of p is 1/6.
Thus the ratio of Var(U') to Vo 18 equal to 1 + O(N'l/ Ty,

Lemma 4.1 let O(F, G) » 6 be an estimsble parameter with
symmetric kernel § = s(ir; Y ). Let W = W, be the associated U-
statistic with M observations on populationa X and Y with cumula-
tive distribution functions F(X) and G(Y) respectively. Assume
that the 25'" moment of the kernel is finite. Define:
8) W aW-0, b) 8'«8-0 and o) 'Ry 145 b

rtr,rt) = S
then for any positive integer i,
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g )2t - LBLL (x(s' )t ¢ o(iY)
gtodyd

T

Proof: For convenience, again let r = 5. Also define:

wal'T e H(& ; ¥ )
oo © irter,rt? Trter, vt
1 k-1
=% L 8' vhere k =M/r .,
t=0

W" 1s an average of k independent and identically distributed
random variebles with mean zero. From the work of Tchouproff [12],

one has
21 1 K1 21
) —2 E( £ 8)

E(V"
te0 ¥

2; tk(k -1) ... (K- 1+ 1)F,'(si)2...rs:(s;)2
1!

+ o("1))

- LB [var(s'))! + okt
1l2 k

[
k2:l

- oml) .

We now prove that W' can be written in terms of W" as follows:

- 142 ] . -
(b.2) W =(M)“zwW (ihM, YJM) R

vhere the sumation is taken over all permutations of (hl, . ’hM);
(.11,..., JM) of (1, 2, ..., M). Starting with the right side of
(k.2),
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1y=2 " 1 2 lk-l 13
M)“zw = (M) z§ £ 8 (%, i 4y )
=0 rt4r,rt rtér,rt
p kel
=g = (M) %es! (%, 3 ¥y
t=0 ridr,rt rtér,rt
k-1

1 M
=z I () ZS'(
k ta0 xhrt-*r,rt Irtet, rt

where £' is taken over all sets of integers,

1<h

il < ven <hrt4‘r-<-M5

1S dppey <o <dppep SH,

fOI‘ allt=o, l’ teoy k"lo

Then,

k-1

(M! )'2:: W= % AN A

z
t=0
Next, since

(w: )21 = [(M! )-22 wn]21 5 (wn)ai s
one has

(w2t < muw" Pt - —(—Liéiki [var(s)* + o(x™*"1))

= o(k”Y) = o) .

The lemma is proved.

Lewma 4.2 Let Z and Q be defined as in (3.3) and (2.10)
respectively. Assume for 0 <p < !'-é-i—l s 1 18 an integer, i > 2,
that ¢ has 41*® finite moments. Then

Prl|z - Q| > NP = o 13P) |
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Proof: Write

Pri|z - §] >MP) = pr[|2 - Q] >NMF; > 0)

Ty T

+Pri|z - Q] > MP; not both positive]

Tio0 Ta

(Tlo)% -p (Tlo)il
<Pr s >+ P ¢ | <Q-
B [(Toﬁt + (1) ] (Toy)? + (10)°

+ PrlT,, < 0] + PriTy; <0] .

Write,

H
Pr[ %(Tm) >Q+ M‘P]
(Top )% + (Ty0)

- prl(z, ) > @+ W)z, ) + (@ + W P)zy Y

+MP 2 +NP 2
= 1"'{[Tlo - (L—"F) Tor) = [Py - (Igf:'__'n-'i) Yoy

1-Q-

+¥uP 2
> -loy - () bOl]} -

One notices that

+MP
1-Q-NM7?

+ M
1-Q-

P 2 2

is a U-statistic with mean zero and its kernel is

Ol] ’

-p 2 -p 2
(h - (M—?) gl - o, - (—SrM_
1-Q-M 1-q-M7?

where g, h are defined in (3.1), (3.2) respectively. Since L

and b01 are assumed positive, one has O < Q < 1. Also, for M

large, one can choose M'P < min(Q, 1 - Q). Thus

13
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+MP 2
-{vyq - (l—%:-_-ﬁ) boy]

2 -p
-oyy - (T2g) (1 + gy * o)y

=-b,. +b _[L+ a® o(MP)]
10 © "10 (T - Q)

-p
M~ o

= -P
= + o(M .
Qzl -~ Q) of )
Hence the last quantity is positive for small MP,

Using Tchebycheff's inequality of the form,

Prl|X] > a] < a2t E(x)?, one has

-P 2 +M"P 2
Prilr,, - (—22MT _yp o, - (M )
{ 107 P ol 107 oL P oL

-Q-

>-[b (._Q_*’_ﬂ.___)bl}

l-Q@-M
21
~p 2 + WP 2
Bl - (M yp 1o [b,, - (—2E )y )
< {10 l-Q-M’p 01 10 l-Q-M'p o1
- ei
{rtmg - 8% )
10 © -Q-M o1

i
-p 2
(L) 2yt {m[h_ (8xn? g}
12 l-Q-M-

IA

’ 24
{2M'P by (a1 - a7+ o)}

by Lerma 4.1, and is equal to O(M 1*?1P) for M large.
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Analogously, one gets,
(Tm)ir Q- u p}
l(m ¢ (1,0
-p
.,pr{[(q M -[(._9:_&__)13 - b
L. Q+n? Tor 1o] Q4D 10
> _[(__l;.ﬁ.)e b - b ‘l}
L-qewP Ol 10
1
L2t oty e (8287 )
112 l1-Q+M
s i 1 — 71
(2P vy, [Q(L - Q)17 + o7P))
= O(M-iﬁip) .
Similarly, using Lemma 4.1,
Pr(Tyo < 0) = Pr(T)y - byg < -byg) S Br(|Ty4 - Byl 22y0)
E(Ty - by4)
1
L
=oMY), end
Pr(Ty, <0) = oMy,
Therefore, Pr(|z - Q| > M'P) = oM 2*21P) 4 ou71) = o(M~122P),

Lemma 4.2 is proved.
Theorem 4.1 U' 1s an unbiased estimator of 6, i.e.,

E(U') = 6. Also, if

MR 3w o S 1t
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Limit N
(1) N—>o00 B exists and is finite for some B, such

that 1 <p < 2.
(11) the eighth moment of ¢ is finite, and

(111) b,y b, are both positive,

then
Limit  Var(v') _ Limt  Fme(Ver ()]
= = 1.
N ——> o VO N —> o Vo

REMARK: In most non-parametric problems, the kernel ¢ is bounded,
hence all moments exist. Therefore, the restriction (ii) is

not severe. Va.r(U;l.) denotes the conditional variance of U'

given m' and n', and Var(U') denotes the expected value of

Va.r(U!;. ), where the expectation is over m' and n', or Var(Uu')

is the unconditional variance of U',

Proof: Notice that m',n' are defined to be greater than r,
and that they are functions of xl,..., xM; Yl,..., YM only. On
the other hand, all the arguments of ¢(iir; ?Jr) in the definition
of U' (see (3.5)) are functions of Xye1? t000 Kyamts Yygaar 0o
Yyaq! - Thus the arguments of U' are independent of X ooes X

4

12 s YM Therefore,

E(U') = E+E(Up)

-1 -1
m’ n' s <
= Em'(r ) (r ) z Eo(xir" er)

1 -1 -1
=e (™) () ze

=0 ,

Hence, U' is unbiased.
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Now, let C = condition that [& - Q| < MP
C' = complement of ¢,

0<p<,l;(oeeLemh.2 for 4 = 2)

N Var(U') = N sm,lv;r(u;. )
= W Pr(|2 - Q| <KP) B, Ver(Ul:)

) -P '
+ U Pr(|Z - Q >HY) By oo Var(Use) -

1 t -
Using the fact that K, .. Var(U:) < Var(u,.) =b,. = Var(9),
which is bounded, by assumption (ii), and

-2+hp)

pr(|2 - Q| >MP) = o(nt o<p<,’§

by Lemma 4.2, one obtaina

1 ? . .a*up
N Var(U') < E e Var(um,) + 1.0(M ) .

It is easy to show that there exists a number A vhich is independ-
ent of m', n', such that

Var(ul;.) < (reblo)/n' + (rgbu)/n' + A/nin(n’a,n'a).

The procedure is to expand the terms of Va.r(U;.) and its corbina-
torials and then to substitute a fraction by unity. Consequently,
one finds that the first two {erms are less than or equal to
(reblo)/m’ and (rEbOl)/n' respectively. Yor the rest of the rxx
terms, we substitute again & certain fractiom by unity and find
that each term has denominator less than or equal to min(n'e,l’a).
Hence we £ind that A may be taken as the sum of all the rxr values

in their numeraiory, Vikci o-e composed or »'c end b _,'s, c,d =

cd

, 8, ..., r. Onc has
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E. _ Var(U') <E, [£rb +-1f-b + A
m ec n m 10 n 01 nn(mufi,nr

- "m'ec 2)’ )

Also, when |Z - Q] <M'P gnd Il —> , m', n' can be written as
n' >N(Q-MP), n'>N(1-Q-NP). Tru,

Nreb IIraic)}

10 .

!
N Var(u ) < - -
mMQ-MP) u(-q-MP)

+ NA + o(u'e*l"p‘ﬂ)
{uin [1'(Q - M“P))«'(l -q-NMP)Y }5

= 0/ )x(oy)? + x(00) 2100 + 2P + o))
+ o' "2) + o(u 2By
= (1 + 20 + o) Lx(by ) + x(by, 12
c L1+ oM™ + o7P)] + o(m*~?) + o(M’a""*p”)

= Lr(vy ) + x(by 2112 + o(u(1PVB) 4 o(wP/P)
+ o(N('e"’l‘P"ﬁ)/ﬁ)],
after putting M = X (t / ﬁ), where K is an unknown non-zero constant.

Bince, by assumption (1), 1 < p < 2, there exists p, so that

0<p <%; , and (-2+4p+8) < 0. Finally,
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$
Lmit  Ver(u') _ tamt ' Ve¥(Uy)

N => 0 N ~> 00 0

t
_Limit N By Ver (Upr)
0

. Limit ["(ﬁp)* (o 21°

N => 00 [r(blo)f + r(b

o1)*)
. [l + O(N(l.p)/p) + o(N'p/B)

+ o(u{-2*4r8)/B)

Hence, the theorem is proved.

In addition to U, other two-stage estimators of @ can be
defined, For example, if O is estimated separately at both stages,
then one can combine these two estimates by weights. This paper
will not include any explicit discussion of such estimators. Om
the other hand, the following one-stage statistic will be dis-
cussed.

Assume thet N observations are to be made, and that the b, d’s
are unknown, (except that b, boy ave positive), then proceed as
if blo = bOJ.' The variance of a one-stage U-statistic is minimized
with respect to m, subject tom + n = N, when

m = N/2, na=N2.

Let the statistic be denoted by U*, then its variance is given by

Var(u*) = 71 2r®(b + by, ) ¢ 0(872)

Hence,
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(h3) Lmtt  Ver(t') nmit ¥ ver(u'
) N —> Yy N —> o0 NV

2
tmt 2% (0 *bgy)

TN @ (o, JF 4 r(og PP

2(byy + by, ) 214 22

Tl e 0 B (4o

wvhere
p= (bOl/blo)* :

When p approaches O or oo, {4.3) approaches its maximum 2. Thus,
comparing the results of Theorem 4.1 with (4.3), an appreciable
decrease in variance can be obtained by using a two-stage proce-
dure.

REMARK: For s ¥ r, if we write ¢ as a function of max(r, s) X's
and Y's, the choice of m, n shall be Nr/(s + r) and Ns/(s + r)
respectively in order to minimize the variance of U* assuming
blo = bOl‘ A simple computation shows that the variance
ratio approaches 1 + s/r as p approaches zero and approaches
1 + r/s as p approaches infinity. Thus the variance ratio may

have a maximm, for r ¥ s, greater than 2,

5. “Optimal" Choice of the Value M Relative to N

"Optimal” choice of the value M (sample size of the first
stage) relative to N (total sample size) will be studied in this

section for the following three cases:
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a) The first eight moments of the kernel ¢ exist

For this case, we proceed as follows. From the last step of
the proof of Theorem 4.1, one has
var(u' )V, = 1 + o (B-1)y & o(wP) + o(u2*4P*8) |

A heuristic method for finding the best B and p is to find the
solution of the pair of equations listed below, which are obtained
by examining the exponentials in the remainder terms of the above

equation.

(591) B-1=p

(5.2) p=2-bkp-p

7/6, D = 1/6, thus M = x(x0/7).

Actually, this pair of values is the "optimal” solution, be-

and get B

cause it is easy to see that any other cholce will make one of the
three terms have a larger order of magnitude than O(M'l/ 6) (or
equivalently, O(N"2/7)). Therefore, Var(U')fV, = 1 + ow /Ty,

b) All moments of the kernel ¢ exist

By Lemma 4.2 and Theorem 4.1, for general i, i >2,

0<p<(i-1)/21, one has
Var(U' )/vo =1 + O(M-(B-l)) + o(M'p) + O(M-i'feip-tﬁ) )

Similar to the above case (for 1 = 2), one solves the two equa-

tions;

(53) B-1=p

(5.4) p=1-2ip-B .
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It is found that B = (31 +1)/2(1 +1) and
p=(i-1)/2(1 +1) is the set of solutions. When i approaches
infinity, B approaches 3/2 and p approaches 1/2. Therefore,
M= k(P14 oore 2(1 + 1)/(31 + 1) hes 2/5 a8 & lover
bound. Thie bound, however, is not obtained. Thus when ¢ has all

finite moments,
var(u' )iy = 1 + o(N1R(H)/(Bi4)y £ o s,

c) The kernel ¢ is bounded

First, it will be shown by the following Lemma 5.1 that
Pr(l|z - Q| >¢') < O(e'e'QM), vhere e is the base of natural
logarithm and e' is some small number. Consequently, an "optimal”
choice of M can be obtained in an implicit form.

Lemma 5.1 (Hoeffding's inequality, see [5]). Let Up,n b @
U-statistic with n observations on any two populations X and Y for
estimating some parameter 6. The kernel of 6 is S(ir; T'),

8 <8 <b. Then for any positive number e',

-2e'2[—Br]

-0 ] max\r,s
Pr(y ,-6>e')<exp( (o) )
for n large, = exp (-O(e'an))
- o(e=e"ny |

Now, from the proof of Lemma 4.2, and neglecting the smaller

order term
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Pr(|z-Q| >e')=Pr(Z -Q>e') +Pr(2-Q<e’)
' 2 2
= Pr {['l'lo - (1-3%{"-?) Tor) = by - (T'?'%'-e"_e') Yor]
, 2
>-[bg - (Toger) b01]}
et 2 . e (2
+Pr {[(Té-ﬂ_-@_e') Tor = 1o} - LTZg=er) boy - Pyl
-
> -Urigse) by - b103} '

Applying Lemma 5.1 and assuming that r = s and

: 2
xlfh'(IJi—&—:;?)ssxa, K3<(-£—Q+—e-r) g-h<K,

X

2 2
Q+ef M

Pr(|z - Q| >e') < exp

(x, - x )P
2
-el(J;qi—er - b)) 2
+ exp 2
(Kj Kh)
= o(e-e'ald)

Hence, one has

Var(U'

Vo

t
=1+ 0(MN' L) + o(e! )+0(ee2M)
Using a similar approach as before, i.e., requiring the three terms

to have the same order of magnitude, one has,

(5.5) MN* =e!

(5.6) 1log e' = -e'?y .
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Substitute (5.5) into (5.6),

log &' = -eN, hence
(5.7) N =-loge'/(e')
(5.8) M =-loge'/(e')f.
From (5.7), (5.8), N2 = -log e' = log(e')™t. Theretore,
(5.9) M =1/ 10g(e') 3 .
Taking logarithm on (5.7),

log N = log [log(e')™}] - 1og(e'F

= log [log(e') ] + 3 log(e') ™l .

It is seen that for e' small,

(3 + 8) 1og(e’)™d > 1og N > 3 log(e’ )t .

Substituting the inequalities into (5.7) and (5.9) respectively,
one has

M < /3 [1/3 108 NM? = P [10g NP1

M > />3 [1/(3+a) log N]l/3 = N2/3llog 1‘1'1'/(3'.‘&)]1/3

By (5.5), m = Ne' , one has

(5.10)

1
N~ /3108 BV NP Y3108 #/3) A
Therefore, in the case with ¢ bounded,

Var(U')/V, =1 + ox13 1)
/3

vhere I is some value between (log Nl/ (3+ ) ):L and
(103 “1/3)1/3 .
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6. Some Exsmples

6.1 Consider the Wilcoxon Statistic. The class D contains all
pairs of cumulative distribution functions F, G which are con-

tinuous.
6 = Pr(X > Y) with the kernel
f(xi, YJ) =1 i X, > YJ

=0 otherwise .

In this case, r = s = 1. The nuisance parameter blo’ b01 and

b,., are

11
2
b6 " 1>r(x1 >, Ya) - [1>r(xl > Yl)]

by = Pr(xl, X, > Yl) - [Pr(xl > Yl)]2

2
b, = Pr(xl > yl) - l1>r(x1 > Yl)] .

It can be shown that
b, =2 Pr(xl>Yl>Y2>:(2)

bOI-aPr(Y1>Xl>x2>Y2)
b11=Pr(xl>Yl>x2>Y2)+Pr(Yl>xl>Y2>x2)
+2Pr(xl>Y1>Y2>x2)+2Pr(Yl>xl>x2>Y2).

The estimators of blo’ b01 are respectively,

Myt oM, < s
Tyo = () (3) o £ 2h(X, ; ¥, )
. 1S4, <1, <M 153, <y SN 2 Y2
-1y -1
M\t M .
Top = () () 2 % 2a(X, ; YJQ)

151, <1, <M 153, <Y, <M 2
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vhere h( !i

; YJ ) = 1/4 if the two Y's are ranked between the
2 2

two X's.

= 0 otherwise.

8%,

; YJ ) = 1/k if the two X's are ranked between the
2 2

two Y's .

= 0 otherwise.
Here ¢, g, h are all bounded. When @ is neither zero nor unity,
only one of the blO’ b01 can be zero. Moreover, it can be shown
that when by = O (byy = 0), byy =by, =6 - 6° (byo = by =
e - 92). If it is assumed that F, G are both strictly monotone,
then both blo and bOl are positive. Therefore when F, G are both
strictly monotone, the two-stage procedure is applicable. Since
in this case ¢ is bounded, one shall choose M between
N2/3[108 Nl/(3+A)]l/3 and Nz/jllos Nl/3]1/3_
6.2 Assume 6 = B(X) - E(Y), where independent observations on
populations X and Y are made with cumulative distribution func-
tions F and G respectively. The class D contains all cumulative
distribution functions with finite expectations. Then O is
estimable., The kernel is ¢ = xi - Yi end egainr = s = 1. In
this case, blo and b01 are the population variance if they exist.
The kernel of b, ., b, are ﬁ-(xi - XJ)E, ﬁ-(Yi - YJ)2, i<y,
respectively. The corresponding U-statistic for estimating blo’
b01 are the sample variances, which can be expressed in the follow-

ing form:
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ro= 7 s dx -x, P =L
10 2 1< i J

-1
1, = £ Ky, -v)P=
SR S s

In this case, the kernels are not bounded, unless the distri-
butions of X and Y are bounded. b, (bOl) is positive if popula-~
tion X (Y) 1s not a constant with probability one. To apply the
theorems of this paper, the distributions of X and Y must have
finite eighth moments. One may choose, say, M = N6/ 7.

If D contains normal distribution functions only, Ghurye and
Robbins have given exact results for small samples {3].

6.3 An example where the theorems of this paper do not apply.

Let the parameter be 8 = [E(X)]% - [E(Y)]%, and let F, G belong to
any class D such that populaticne X and Y have zero mean and all
finite moments. Now the corresponding symmetric kernel for esti-~
mating 6 will be 8 = xixJ - YjYJc Then the kernels for b

10’ Po1

and bll are of the following forms respectively:

(X%, - 1Y) (XX - Y3Y),)

(X% = 1Y) (XX, - Yp¥y)

(X)X = %)% - %) -

Since it can be shown that each of theese has zero expected
value, one cannot use any of the results of this paper. However,

the theory of U-statistic is applicable and one needs the kernels

for bao and boa, which are given respectively by:
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(XX - 1L)XX, - 4Y,)
(X%, - ) 0X, - Y1) .

Then the expected values of these kernels are:
B ) = (var(x))® >

E(!?_ Yg) = [Va:r(!)]2 > 0, respectively.

Special attention should also be paid to the fact that in
this case, the associated U-statistic may not be asymptotically
normally distributed, see [10].

7. The Asymptotic Distribution of U'

In this section, it will be shown that U' is asymptotically
normally distributed. Let us consider first, two random variables

Y' and Y* defined as the following:

Y= (U - 0)/(Ey Ivax(y!, 1)

Y = UNIQ’NI(l_q)'e/[var(UNlQ’Nl(l_q))]% .

It has been proved by Rosenblatt [10, Theorem 2.2] that Y* is
asymptotically normal with mean zero and variance one. 1In what
follows, Theorem 7.1 shows that Y' is asymptotically equivalent

to Y*, thus also asymptotically normally distributed with mean zero
and variance one.

Theorem 7.1 Y' and Y* are asymptotically equivalent, i.e.,

P-1im (Y' - Y*) =0 .
N' —>



oy peemy  guey

Svantmnu.

Proof: 1In order to show that Y' and Y* are asymptotically

equivalent, it suffices to show that
EY - Y —>0 as N' —> o0.

Now, E(Y' - Y*)F = E(Y")° + B(Y*)? - 2B(Y'YY) .
From Theorem 4.1, U' is an unbiased estimator of € and Y' is its
normalized form. Hence E(Y' )2 =1, By assumption, E(Y'")2 =1,

Also, by Theorem k.1,

B (Var(ly) = (L0 )x(b) ) + x(v 12 + o(a'™d)

- and

Var(Uyrg 1 (1-q)) = (FFb0)/(H'Q) + (Pog) )/ (1-Q)) + o(*™d)
by Rosenblatt [10, Lemma 2.6). Therefore,

(7.1) E(Y'Y*) = E[(U* - 6)(UN:Q,N:(1-Q)—9)] .
: {[E Var(U:y )] [Var U, ]} -4
m"* m N'Q,N'(1-Q)
= W Er(n ) + (o, PIRRUU - 03 e(1qy )]

Now let Uf be the statistic U' with the kernel ¢'(X ¥, ), and

il‘ ‘jr

be the statistic U with the kernel

Untq, Nt (1-Q) N'Q,N (1-Q)
; YJ ).

r r

Also let;

Q
]

condition that N'(Q-M'P) <m' < w'(qw'?), I]I >p>0 .

(@]
n

complement of C.

Then, one may writc



B = 0 [r(oy ) + r(bgy )17
E{Em’ccl(ﬁx;' )(t’N'Q,N‘(l-Q))Im‘ eC]}Pr(m'eC)
-2
+ N'[r(blo)% + r(bm)%]

2 (B o L0 (g o) e0t } Bt ect)

Now notice that E(Y'Y*) ic the correlation coefficient of Y'Y and

since both Y' and Y* are functions of random variables Xygap? *o»
Xgam' 5 Yya1? v v Yygep? » One has 12 E(Y'Y*) >0, and for any n',
n' >r,
0 ! " 1
E{ €C.(u .U N, (1 Q)lm eC )}Pr(m ec') >0

Consequently,

Nl
E(Y'Y*) > {r(v o)% + r(b 1)2] {Em'ec( m* U, N (1- Q)Im ec)}

- Pr(m*eC)

= N E{ }
[r(blo)% + r(bOI)%le Wt (@48), 1" (1-6-8) ', 1 (1-@)

+ o(u 2By |

by Lemma 4.2, where e denotes some value in the interval

(-M?, M'F), Notice,
ElON (qea), 0 (1-0-3) Ow'q,n*(2-q))

tlaea). "L N1(1-0-2)."1 wig.~1 nt(1-a)."1

: 21’32232&3“'(211,‘ ?Jr)¢'(ikr; Ttr)l,



§m— Fa——

vhere

33

Z‘.l, I‘E, 2‘.’, l‘.u are sums over all sets of integers,
u+1511<...<1r_<_n'(q+é)
u+1531<...<3r_<_n'(1-a-8)

M+1l<k <...<k SNQ

M+l <... <t < K*'(1 - Q), respectively.

The expectation of 0'()'( Y )0'(1(k Y ) is zero when the

sets (11,..., 1r), (kl, ceey kr) have no integer in common and the

sets (Jl, coey Jr), (tl,..., tr) have no integer in common. On the

other hand, the expectation of it will become bc a if there are c

common integers in the former pair of sets and 4 common integers

in the latter pair of sets. Therefore, the number of sets having

(¢, 4) integers in common are: for all e non~negative,

(7.2)

(7.3)

Note that for e identically zero, Y' =Y

(T) (N Q) (@Fe)-c) (1) (1-Q-2) ) (W(1-Q)-4,

end for all e non-positive,

(2 (@48 (1)) W' (1:02)-4,)

)

*

Consider (7.2), which, for N° large, is

T (T.4)

L ()T (#8)-)" " —E——
! (v-c)V) atl(r-a)']

[l\l'(l-Q-é)]r[N'(1-@2)-(11;‘:-(1 + lower order terms

1 (N' )hr-c-d I‘(

elat[(r-c)i(r-a)1)° 0#8)""%(1-0-2)7(2-0)"
LA \T=C).\T-a).,

+ o[(N' )l‘r‘c-d] .



3k

On the other hand, the coefficient before the summation sign is

rewe) L (e 2) vt weat it (1-q) T
(1.5)  (V(Ee))T@(1-a-2)) TN Q) TN(-4),

= ()M (2-0-8)F(@+3) T (1-0) QT ()Y + ol ()7
Combining (7.4), (7.5) and the above discussion, one has
E(Oyr (qee), N (1--8) Un'q,N*(2-q)’

= ; ; [ 1 5 (N.)hr-c-er(l_Q)r-d
c=0 d=0 c!dl[(r-c)i(r-a)!]
(c,a) # (0,0)

(Q_‘_é)r-c(l_Q_é)r + O(N|‘+r-c-d)]

-1
C L )M (1-Q-3)T(Q#8) T (1-Q)QE () H + o(n)*)

- r oz )l*bcd/{(N* THare) (1-0)%elal [(r-0) (r-0) ] .
¢=0 d=0

(c,a) # (0,0)

It is seen that for smaller c + d, the term is large, and as ¢ + d
becomes large the term becomes small in order of magnitude. Re-
taining the lergest order of magnitude terms (c, d) = (1, 0) and

(e, d) = (0, 1), one has,
E(Uyt (qu2),1(1-0-8) On'Q,n*(2-q)
= Po, it Hewe)t + B W l(a-q)?
= rablo(N')'lQ'lll + /Rt 4 r2b01[N'(l-Q)]°l + o(N'"1)
= 2% (8 ) QML + 0(8)] + rPogy 8 (1-)171 + o(w' 1)
- () Mr(ogy 1 + 20, A2 + 0P,

vhere & —> 0 slowest for e near M ¥ .,
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With essentially similar steps, one will find the same result

if e is non-positive. Thus

1> B(yy*) >

» { [x(b, ) + x(vy, 112
[=(o,0)F + x(o, 12 W

+ o(u"lu‘P)} + o(M2HP*B)

or 1> E(YY*) >1+0MP) + o 2Py

Therefore,

Limt BY - Y% = Lmit  [2 - 2 + o(n"?/R)
N'—> N'—> 00

_ 2vip
+ O(N N1 =0,

Theorem 7.1 is proved.

Corollary 7.1 Y' is also asymptotically normally distributed
with mean zero and variance one, or, U' is asymptotically normally
distributed.

Next, in the expression for Y' defined sbove, if one substi-
tutes the estimated variance in terms of the values of Tlo and T01’
in the variance of U' (in terms of the val' 2 of b, and b )s

since Tlo and TOl are efficient estimators of b, . and b01, the

10
resulting standardized random varisble Y; is also asymptotically
normally distributed with meen zero and variance one.

Theorem 7.2 Y, = (U' - 9)/@'-&[1‘(1'10)% + r('I‘OI)i.I} is
asymptotically equivalent to Y'.

Proof: It suffices to show that N"i (r(Tlo)% + r(TOI)*) is
asymptotically equivalent to N"i (r(blo)é + r(bOl)é) (see (6],

Theorem 5 and applications), i.e.,
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~% H H -+ )] .
P-lliiﬁi; oo[N' (r(14)* + r(74)%) - N (r(blo)hr(bm) )1=o0.
In other words, it is equivalent to show that for any e' >0,

d 4 H % 1gtE
Limi Pr + - r(p - (b S &'y co.
N'-—; o0 {Ir(Tlo) ™(Tor) (0)0)% - r(bg 2| > e }

Now,

o {l(m g + 21 - oo, - oo > ot}

<o { Intry)t - 2oy ¢ Ixtrgy )t - rtop > st

(7.6)
< PI'[QII'(TIO)% - r(blo)i" > e’N'%]

+ Pr[2|r(T01)% - r(bOl)%I > e'N’%] )

Using Tchebycheff's inequality,

2
B {alx(z,)? - r(blo)%l} E {2le(1y) ) - r(o5,)%1}
- Ne 12 N'e 2

Applying the identity (see [1) p. 353),

a%_bé-:a-b_ ﬁa-h)z
2(b)§ 2(b)2 [o2 + b2)°

one has
2
E{etr(mlc,)* - r(bm)%]}

2
(T)5-P10)T10"P10)

— g3
l“"’10[(T10) *+(b14)%)

+E 1o 10)& }
m’10[(T10) + (blo) * .
(T, by )% b, P )
<2 {E 1077100, 5 1o by 10
=7 Yo I ve ‘ h3 }

10 10
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By Lemma 4.2, and by the fact that it is also easy to extend it to
the case for odd moments of a U-statistic, i.e., E(U-6 )21"1 - O(M'k),
one has

2
- b
e e L
10

(T

B( 10

Y )
10__) - O(M—e)

E(
3
*0

Consequently,

e{olz(z, ) - xo ) 1

(1.7) = o(N'Me'®) —> 0

N'el®

with suiteble choice of e', as N' —> .

With exactly the same kind of argument, one has

2
2 {elr(z, ) - r(o 11}

5 —>0 as N —> 0.
Nlel

(7.8)

Combining (7.7), (7.8) and putting them into (7.6), one has,
sty prl|=(r ¥ + x(1, ¥ - (o, - x(v, ] > etwrhy

< Limit  O(N'Me'?)™L w0 .
N'—=> o0

This proves the asymptotic equivalence of N"i'[r('l'm)'k + r(T01)%]
and N'é[r(blo)& + r(bOI)%] and hence the asymptotic equivalence of

1] 3
Y'toY.
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Corollary 7.2 Y; is asymptotically normally distributed.

8. Extension of the Two-stage Technique to Functions of More Than

Two Populetions

So far, the problem of two-stage estimation has been studied
with estimable functions (or parameters) of two populations.
There is apparently a possibility of extending it to functions
of more than two populations.

Let x(l)

, evos X be k populations (k >2) with cumlative
distribution functions Fl(x) y evey Fk(x) respectively. Also let

8 = G(Fl, veoy Fk) be the functional to be estimated, with symmetric
kernel 0(5'((1) s ee, i(k) ) where )'((J) represent vectors of dimension
r, i.e., i('j) are r independent observations on population x('j).

The corresponding U-statistic with nJ observations on X(J) will be

k n, -1
=y = 1 (1) (k)
unl,--.,nk ' Fil-“-l (r )] L 0(x‘jl » "':xjk )

where r.k is the k-fold summation over a set of integers such that

for each vector of integerse, Ji’ 1i=12, ...; k, 1< 'ji < . <
1
J:L < n,. Analogously, define

r
0"(i(l);.n_;i(k)) - @(i(l);.u;i(k)) -6
RGBSl )
where :-c(") represent vectors of dimension aJ, aJ =0, 1, ..., r
for all § =1, 2, ..., k; )7(“1) represent vectors of dimension

r - 8y, (r - 8y) = (83,0, s r) forall J =1, 2, ..., k.
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— ) gleye
bﬁl:-“:ak Euﬁls'"a‘k )]

for vectors f(d) of dimension ‘J J =0, 1, ..., T for all
J=1, oo, k.
Then when the variance of ¢' exists, one can write

kK n -1 -y
= I i e T nl '”r nk
ver(g) = LT ()] a.lEO akr. R R (g LAY

k

Now, when a fixed totel sample size N is given I n, = K, and if
i=]

n, —> o in such a vay that x:xi/n‘j are bounded sway from zero and

one, for alli #J, 1, =1, 2, ..., k. Then the asymptotic ex-

pression for Var(Uk) is

k g
Var(u ) < T : b(i) = Vi y B8sa&y
=1
(1) ,
where b P o1,....0,...
th ‘

1™ position and zero elsewhere.

5 with one of the subscript 1 at the

Analogous to the case of k = 2, it is easy to show that V' is

minimized when

n, = (b(i))f/ g (b(i))ﬁ'
i=1

and the minimized value of V' is Vo

S PR
i=1
vhen b(1), 1 =1, 2, ..., k, are all known.
The two-stege estimating procedure will be as follows:
(a) Take M observations on each of the x(i), 11,2, ..., k,
where 2rk < kM < N-rk . o
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(b) Bstimate the k unknowns b(i), i=1,2, ..., k, by, say,
o(4)

(¢) Take m, more observations on X(i), i=1,2, ..., k, such
i
that

m = N'(‘.I‘(i))%/ lz‘: (T(i))% vhere N' = N ~ kM
is=l

for estimator using only the second stege observations.

(d) use UL, the analogous two-stage estimator of U', to
estimate 0.

It can be shown, using essentially the same arguments and
under the same kind of conditions as in Theorem 4.1, but replacing
the condition (iii) by (1i1'):

)50, 1.1, 2, ..., k;
thet the analogous result can be obtained. Also, the asymptotic

distribution of U1'< is again normal.

9. Summary of Results on U"

In this section, results on U" will be summarized without
proof. U" 1s introduced in order to utilize the data from the
first-stage samples as well as the second-stage samples. (Recall
that U' is constructed based on the second-stage samples only.)

The first stage for U" is defined exactly the same as for U'
(see Section 3). However, in the second stage, m" (not m') more
observations from population X and n" (not n') more observations
from population Y will be taken such that m" + n” = K' = N - 2M.

The sample sizes m" and n" are determined as the following:
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[
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n' = [NZ) - M when (M + 1)/N < 2 < (N-M)/N
(9.1) m' =0 vhen Z < (M + 1)/

n' =N when Z > (N - M)/N
and ' =N -

The statistic U” is defined as the estimator of 6 based on
M+ n" and M + n" observations on populations X and Y respectively.
The definition is:

w =1 "=
(9:2) o= () T wed ;Y )

vhere the summation is taken over sets of all integers,

1] L]
14, <. <1 SM+m"; 1€y, <. <y SM+a".

1
The statistic U" is blased. However, by the help of two
Lemmas, the following theorem is proved.
Theorem 9.1 If the conditions of Theorem 4.1 are satisfied,
then E(U") =0 + oM 1" + MEB), and thet

umt B - 0PN, =1 .
N—>

Next, it is found that there is no "optimal" choice of M
relative to N so that the ratio E(U" - 6)2/V0 converges to unity
as Quickly as possible. However, it is also found that in any
case, this ratio converges to unity not slower than the ratio
Var(U' )/Vo, 1f the same set of values of B and p are used.

Again, although U” is biased, it can be shown that, using
similar techniques as for the case of U', U" is also asymptotically

normally distributed, either in terms of its variance or in terms



of the estimated variance, i.e., with b, (b°1) replaced by T,
(T01)‘ Finally, using analogous steps as for U', +he results on
U" are generalized to cover the situation of sampling from several

populations.
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